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Abstract

A new technique is presented for computing the scattering by two-dimensiona_ structures

of arbitrary composition. The proposed solution approach combines the usual finite ele-
ment method with the boundary integral equation to formulate a discrete system. This

subsequently solved via the conjugate gradient (CG) algorithm. A particular characteris-

tic of the method is the use of rectangular boundaries to enclose the scatterer. Several of

the resulting boundary integrals axe therefore convolutions and may be evaluated via the

fast Fourier transform (FFT)in the implementation of the CG algorithm. The solution

approach offers the principle advantage of having O(N) memory demand and employs
a one-dimensiona_ FFT versus a two-dimensional FFT as required with a traditional

implementation of the CGFFT algorithm The speed of the proposed solution method

is compared with that of the traditional CGFFT algorithm, and results for rectangular

bodies are given and shown to be in excellent agreement with the moment method.
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Chapter 1

Introduction

Two-dimensional problems have been studied extensively from both analytical and

numerical standpoints for many years. The demand for three-dimensional (3-D) methods

has increased in recent years, and as a result two-dimensional (2-D) methods are finding

their niche as testing grounds for 3-D applications. The step required to generalize a 2-D

method to 3-D is almost always large in analytical and geometrical complexity. Most

importantly, though, the demands in computation time and storage are often prohibitive

for electrically large 3-D bodies. Vector and concurrent (i.e., hypercube, connection, etc)

computers are beginning to eleviate the first of these demands ([1]-[7] to mention a few

of the papers addressing this)i but storage demands remain problematic. A reduction in

storage requirements is therefore essential.

The traditional Conjugate Gradient Fast Fourier Transform (CGFFT) method [8],

[10] is one such frequency domain solution approach which requires O(N) storage. This

method involves the use of FFT whose dimension equals that of the structure under con-

sideration and therefore demands excessive computation time when used in an iterative

algorithm. With this in mind, a new solution approach is proposed for solving scattering
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problems that addressthisdifficulty.The proposed method willbe referredto as the

FiniteElement-Conjugate Gradient Fast FourierTransform (FE-CGFFT) method and

was inspiredby Peters[10].

The FE-CGFFT method requiresthatthe scattererbe surrounded by a doublerect-

angularbox. Insidethe box boundaries,the Helmholtz equationissolvedvia the finite

element method. The boundary constraintissatisfiedby an appropriateintegralequa-

tion,which implicitlysatisfiesthe radiationcondition.Along the parallelsidesof the

box, thisintegralbecomes a convolutionand is,therefore,amenable to evaluationvia

the FFT. The dimension ofthe requiredFFT inthismethod isone lessthan the dimen-

sionality of the stucture leading to an O(N) memory demand making it attractive for

3-D simulations.

The proposed method-is similar to the moment-method version developed by Jin

[11]. Jin's method was in turn based upon work published in the early 70's by Silvester

and Hsieh [12] and McDonald and Wexler [13], who introduced an approach to solve

unbounded field problems. The proposed method is also similar to other methods, a

few of which will be mentioned here. The unimoment method [14] uses finite elements

insidea ficticiouscircularboundary and an eigenfunctionexpansion to representthe

fieldsin the externalregion. The coefficientsof the expansion are then determined

by enforcingcontinuityat the finitedement (FE) mesh boundary. The coupled finite-

boundary dement method [15]usesthe finitedement method within the boundary and

the boundary element method to providethe additionalconstraintat the termination

of the mesh. Unlikethe proposed method, the solutionwas employed by directmatrix

inversion as in [11], and the outer mesh boundary was not rectangular to take aAvantage
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of the FFT for the evaluation of the resulting convolution integrals. Further, only one

boundary was employed, and therefore an analytical evaluation of the Green's function

was required.

In this work, we consider only rectangular structures and results derived from this

formulation are compared to those based on traditional moment method techniques.

Nevertheless, the proposed method is equally applicable to more complex geometries by

using available sophisticated finite element modelling packages.





Chapter 2

Analysis

Consider a cylindrical body of arbitrary cross-section and composition illuminated

by the plane wave

(2.1)

as indicated in fig. 2.1 (A. time dependence of ej_t has been assumed and suppressed.).

To evaluate the fields scattered from this object, two boundaries axe placed tightly around

the body as shown in fig. 2.2. Inside the outer boundary, the Finite Element Method is

applied to solve the Helmholtz equation given by

v. [v(_)v¢(_)] + k_.(_)¢(_) = 0 (2.2)

where

for E-polaxization and

¢(_) = E,(_) (2.3)

1
v(_)= _ (2.4)

_,,(_)

.(_) = _,(_) (2.5)

_) = H,(_) (2.6)
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Figure 2.1:Geometry ofthe scatterer

I

v(_) = _,(---_ (2.7)

_(_) = _,(_) (2.s)

forH-polaxization.Also,ko = 0_ isthe wave number, aaxdpr and ¢,axe the relative

permeablility_md permittivity,respectively.

The appropriateboundary conditionisenforced on the surfaceof the impenetrable

boundaxy, while the rz_liationconditionissatisfiedimplicitlyby evaluatingthe integral

equation

on the boundary r_, where

c(_,_')= -_n$21Cko_-_'I)

(2.9)

(2.10)
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Figure 2.2: Partially discretized body

is the 2-D Green's function in which H(2)(.) denotes the zeroth order Hankel function

of the second kind. Furthermore, _ and _" are the usual observation and source position

vectors, respectively, and

l_- _'I-= _/(,- _')_+ (y- y,)2 (2.11)

The normal derivativesare taken in the directionof the outward normal of rc.

2.1 Discretization of the Object and Field Quantities

In fig. 2.2,ra isthe field/observationpoint boundary, and rc isthe integration

contour, which is placed midway between r, and rb. Also, Fd denotes the contour





Definitions for Finite Element Mesh

Ng = totalnumber ofnodes in the finiteelement mesh

Ne = tot_lnumber of dements in the finiteelement mesh

Nz = number of nodes on ra or rb along the z-direction

N_ = number of nodes on ra or rb along the y-direction

Na = totalnumber of nodes on Fa

Nb = totalnumber of nodes on rb

Nab = Na q- Nb

ra = 4

rb = _'=I rb,

rc 4= E#=I re,

(zo,,ya_)- coordinatesof a pointon contour ra_

(Zb,,Yb_)-coordinatesofa point on contour r6,

Table 2.1:Definitionsforthe finitedement mesh

enclosingthe impenetrable pc_rtionof the scatterer.Herewith, eax.hsideof r_, rb xnd

rc willbe numbered counterclockwisestartingfrom the top side,as indicatedinfig.2.2.

The fieldsin the regionbetween r, and rd satisfy(2.2)in conjunctionwith the required

boundaxy conditionon rd. The boundary integralequation (2.9)wiU be enforcedon F,.

To numericMly solve (2.2),itisrequired that the regionwithin ra be discretized.

This isdone in a tra_UtionMmanner when employing the finitedement method. The
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DefinitionsofFieldVectors(interms offieldunknowns at nodal points)

_, = fieldscorrespondingto the nodes on ra,

_b, = fieldscorrespondingto the firstIV_or IV_(whicheverisappropriate)nodes on rb,

_, = fieldscorrespondingto the nodes on rb_

_i = fieldscorrespondingto re,on Ienclosedby rb and r_

_d = fieldscorrespondingto the nodes on the rd

Table 2.2:Definitionsof the fieldvectors

globalnode numbering startsfrom the rightendpoint ofcontour r_t and proceeds coun-

terclockwise.The numbering continuesbeginning at the rightendpoint of contour rbt

and proceeds counterclockwise.Within r_, the nodes are numbered from the lower left

corner and proceed columrtby column. The definitionspertainingto the FE mesh are

given in table2.1.Each node correspondsto an unknown fieldvalueto be determined.

Itisimportant to associatethe unknown fieldvaluescorrespondingto the variousnode

groups on contours r_ and rb by using differentvariablesThe labelingscheme isgiven

in table2.2,and thisdiscriminationofthe nodal fieldsisrequired,sincethey are treated

differentlyin the analysis.

2.2 Derivation of the Finite Element Matrix

One of severalapproaches may be used to generatethe finiteelement matrix, such as

the variationalapproach or the method of weighted residuals.In thisdevelopment, we

willutilizeGalerkin'smethod, which isa specialcaseofthe method ofweighted residuals
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with the distinctionthat the testingfunctionsare the same as the basisfunctions.

Proceedingwith the finiteelement analysis,we may rewrite(2.2)as

0 0

the residualofwhich isgiven by

0 _0 [v(z,y)_y¢(X,y)]-k2ou(X,y)¢(x,y) (2.13)

The fieldwithinr_ may be representedasa summation ofpiecewisecontinuousfunctions

and, thus, may be written as

N,

¢(x, y) = _ ¢°(x, y) (2.14)
• I

where Ce(x, y) is the field within element e. It is expanded a_

it,yJ j (2.15)
jffil

where N_'s axethe standardshape functions(foundinany standard finiteelement book),

_b_'sare the fieldsat the nodes,and n is the number ofnodes per element. The weighted

residual equation for the eth element is defined by

/fs N_Rdzdy = -.- 1,..., n (2.16)0 i
I

where 5'e denotes the surface area of the eth element. Inserting (2.15) _Lnd (2.13) into

(2.16)yields

j=l

i= 1,2,..., n (2.17)
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Further, by using the identities

N:O__(, o___ o I ON_ ,_ ,,.ON:ON;

and the divergence theorem

where C 'e is the contour enclosing the eth element, (2.17) becomes

L//,r o,,,.o,,; )v'-_-u -"_"_ kouN; N; dp;dxdy(,,_g+ _2 ..j=l y Oy

• • _;---L "= N; _; v_2-z* + y] ._dl

This may be written in matrix form as

where

and

i= 1, 2,...,n

Ae_b • - b •

\
.= 2 • el

[A_]u /fs. _v_'-ff_-x + vlOlV: ON e. ONtcgyON_oy - k°uN; N; / dzdy

j___ /c I ON* ON'.. \

For linear triangular elements, N_ axe given by

1 e
Nt = _-5;(., + blz + cl_)

13

hd/ i = 1,2, .... n

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)





and

1
f/e __ _det

1 zl y_

1 x_ y_

1 xS Y_

= _(b,_ - b;c$)

• ._ xe. •a, s.k- _.g

¢

c, = xi- x_

(2.26)

(2.27)

(2.28)

(2.29)

where (x$, y[) is the coordinate of the ith node of the eth element. From (2.25)

ON; b_

Ox 2ft _

ON_ c".
Oy 2ft*

Substituting these and the formula

/_s P!q!(N_)_(N_)qdxdy = 2fP(p + q + 2)!

into(2.23),we find

[A'],i= _-ih:h:+ c,'c;)-k_'_,.
4f/e '-' ": 12

(2.30)

(2.31)

(2.32)

(2.33)

w here

(

= _ 2 if i = j{2ij

t 1 otherwise

(2.34)

In (2.33) we have a_umed that u and v (the material constitutive paxameters) are

constant withineach element and axe givenby ue and ve,respectively.By summing over
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allelements as impliedby (2.14),we may writethe overallsystem more explicitlyas

A,_,.. A_b 0 0 ¢,, ] b,..

!A6_ A_b Abz 0 Cb 0

- (2.35)0 Alb All Aid d#l 0

0 0 Adl Add dpd J 0

In this, the values of the elements in the submatrix Apq axe the contributions associated

with the nodes in group p which are connected directly to the nodes in group q.

One can easily show that the line integral contribution (see 2.24) of those elements

vanisheseverywhere,unlessthe element has a sidein common with ['_.As a result,be

contributesonly from the boundary r_ of the finitedement region,as indicatedby the

presenceofthe vectorb_in (2.35).Without a prioriknowledge of the totalfieldon that

boundary, ba cannot be determine. We may, however, providethe appropriatecondition

on thisboundary by utilizingthe integralequation (2.9).This amounts to replacing

the firstblock-rowof the matrix (associatedwith Ca on ra) with a discreteform of this

integralequation.

2.3 Evaluation of Boundary Integral

The boundary integralin (2.9)may be writtenas a summation offourintegrals,one

foreach sideof the contour re as
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+ fr_ [G('_,'_) _-_=d?(-_) - d)(-_) _-_G(-_,'_)] dlc4 } (2.36)

where the derivatives along the x and y directions, denoted by _= and _--_y, respectively,

have been left in this form for the later convenience of determining them numerically.

More explicitly, we have

(2.37)

and

(2.38)

where the first subscript on x or y refers to the contour (a, b or c), and the second refers

to the contour number (see fig. 2.2 and table 2.1). It is noted that the arguments of the
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Green'sfunctions have been modified to imply a convolution when appropriate, a_d this

representationwiU be used throughout.

The normal derivativesof¢ may be evaluatedvia the centraldifferenceformulas

£¢(xc,y') = [¢(z_,y') - ¢(xb,y')] + O(A 2) (2.39)
L
A

0 1

vgn--¢(x', Yc) -- K [¢(x', y,1) - ¢(x',yb)] + O(A2) (2.40)

where A is the displacement of r_ from rb (A is usually less than one tenth of a wave-

length). Substituting (2.39) and (2.40) into (2.37) and (2.38), we obtaSn

¢(_, y_l ) = ¢;"°(x, y_l )
3 3

{zr • 1
cl 3 3

c2 3 3

+ a(x - _',y_l ,_1¢,(_',_3) - K;a(_ z',y., yc3)¢(,yb_) dx'
c 3 3 3

(2.41)

and

(2.42)
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in which

I i 0

K_ = _ 4- _ O'x' (2.43)

I 1 09 (2.44)
K_ = _ + _Oy---7

Assuming a pulse basis expansion for the nodal fields (centered at the nodal positions

along contours F_ and Fb), & midpoint integration may be performed for the evaluation

of the integrals in (2.41) and (2.42), to obtain

¢(zi y., ) i,,c, =0 (z_,y.,)
3 3

N_

+ zx_
j=l

,,.[+
j=l

N,

+ a_
j=l

x j, Y_l,s Yc_)¢(xj, Ya, ) - K+G(xi - x j, y_,_,3Yc_ )¢(xj, Yba)]

K2G(z_, zc_,yo,, yj)C(x.,, yj) - K2G(z,, zoo,yo,, yi)¢(zh, yj)]
3 3

zj, y,.,,_y¢.,)¢(xj, y,,,) - KFG(z_ - zj, y.,,, y¢_)¢(xj, y,, )]

[KiG(z_,z_,,yo[,yj)C(z_,yj)- K.+G(zi,z_,y.,l,yj)¢(zb,,yj)] }

(2.45)

and

¢(_o_,y,)= ¢,"°(Zo,,y,)

+

t 4

- , K v G(z_, x.i, Yi, Y:, )@(z_, Yb, )

N" [K+G( z', ]+ A _.. ,z_,yi - yj)dp(z..,,yj) - Kia(z.., ,x_,yi - yj)_xh,yj)
j=l t

j=l t *

18





h'=

j---1

(2.46)

In these z_ and Yi denote the ith matchlng/testing points corresponding to the nodal

locations on £_, while z i and yj denote locations on I'b. We recognize some of the terms

in (2.45) and (2.46) as discrete convolutions amenable to numerical evaluation via FFT.

The subsystem (2.45) and (2.46) may be written more concisely as

!¢o, ¢o,,_c

¢_, ¢'-F

s:,_,R.

TE,b,

S+
a 1 bl

T_b,
-t-

S+bl Rr

T+b,

s_,,R, T_,, s:,,,

s:._ T:,_, s+...._

s:._._ T:._ S*...

J)Q'I

¢a2

_ba3

¢a4

(2.47)

with the vaxiouspaxameters to b'-egiven explicitlylater.The matrices Rz,v simply re-

versethe order of the unknown vectorso thatthe convolutionsmay be performed prop-

erly.This isrequiredsolelybecause of the employed counterclockwisenodal numbering

i= 1,2,3,4
, =(')

(_b_,)last ¢b, first j = 2,3,4, 1

scheme.

Since
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the vector

T

[_bl _b2 _b3 _b_, ] (2.49)

can be related to the actual unknowns on the contour rb via a transformation Db as

¢_ =Db¢_ (2.50)

and (2.47) may then be written as

(2.51)

or

where

and

I + L,.o =

La b --"

I+ S_b _ T + S_b3Rz T_b `

T:,,, l + s:,_, T£_ S:_,,a,

s:_,_ r_,, , +s:_ r:_,

T_b - S+_ P_ r+b, I + S£b `

s.+,_, T:,,, Sg,,R. r_,

T+ s:,_ r_,_ +S,,b,/Z,a2bl

S_b Rz T_ Sgh T_b ,

r& S:,_,v,, r:,_, SI,_,

(2.52)

(2.53)

(2.54)
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After replacing the first block row of (2.35) with (2.51), the complete system may be

finally written as

1+ Laa -LabDb 0 0

Aba Abb Abl 0

0 Alb All Aid

0 0 Adl Add

to be solved via the CG algorithm.

Cb

¢1

Cd

0

0

0

(2.55)

The Elements of A Bt

The elements of ABI defined above may be evaluated via the discrete Fourier tr3.us-

form. Specifically, we have

S±..,b, ¢b_ = DFT-' { DFTtG(z,y.,,yb, ) :t: G_(x,y.,,yb_ )]DFT[_b] ] t
3 3 3 3

(2.56)

S_b, Cb, = DFT-' { DFT[G(z,y,,3,yb , ) 4- G,(z,y.3,yb, )]DFT[¢bl ]}
3 3 3 3

(2.57)

S + ( y)IDFT[¢b_, }o262¢62 = DFT -t DFT[G(z_2,zb2 ,y) + G.(z_,zb2, ]
4 4 41 4

(2.58)

S + _'l,,_ - DFT-' {D_-L'TtG(z,.,,Zb2,y)-l.- G.(z,..,zb,,Y)]DFTtd#b_]}
_b_ 4 4

in which DFT denotes the discrete Fourier transform operator. Also

(2.59)

• °

(2.60)
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Gu(z, =', y, y')

A ;,9

- _;G(z, =', y, y')2

• H(2)

_/(=_ =)2+ (_ _ y)5
AO

- _-_aC_,=,y,y')

-- -_k8 o -'-_/(=_ _,)2q.(_ _ _,)_ -" (y- y') (2.62)

Special cases of the convolution operators for the chosen mesh axe given as

G=(z.,,zb_ ,y -- _') = -_(-- )±ko _/t--'=.i Zb_) u+, , _ + (v _ y,)2
I;C,,2 -- Xb2 [

4 ,i

a,,(=- =',y,, ,Yb,) = _(-8)Ako _ IV..,- Yb,I
3 3 3 3

3 3

{Y" (2.64)
Y_

and the corresponding expressions for G axe implied by the arguments in the previous

two equations.

The cross-term element subm&trices are given by

IT:* ] = G(zi, zb_ ya,,yj)"l'Gz(Zi,Zb,,y.., y.f) (2.65)atb2 _

,. _4 ij 4 s , 3

IT."..[ = G(=.,,=i,p,,pb,) _ G,,(=,.,,=,,_,,_, ) (2e6)
L;

with
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and

G,(zo2, xj, y_, Yb, )
4 3

* _I,_ (2.68)
_'(Xa_ -- Xj)2+ (Vi-- Ybi )2 lYi-- Yb, t Yb,

where again the corresponding expressions for G axe implied by the arguments of the

previous two equations. Making the substitutions

and

)2 (i .5)2A 2 (2.69)(Xi --Xb2 -- --
4

(yn, - yj)2 = j2A2 (2.70)
3

=i(Zi__Zbl)2+(yn_ __yj)2 = A_1(i_.5)2+j2 (2.71)

(Xa2 -xj) 2 = j2A2

(yi - yb, )2 = (i - .5)2A 2
3

==_i(x=: _Zj)2+(yi--yb_)2 = A_/j2 + (i --.5)2

we may write G_: and Gy as

Gz(xi,Xb_ ,y,_ ,yj) --_ .4-( )ko V( i _ .5)2 + j2 Xb,

(2.72)

(2.73)

(2.74)

(2.75)

- H(2)(koVf+(i-5)_)Ii-.51A _Yb' (2.76)
GIj(zal ,zj,yi, ybl ) = "l'(-_)ko ' _/j2 + (i -- .5) 2 tYb,

to be used in the actual implementation of the system. Since each of the above relations

axe similar, we axe required to store only one of them and alter the signs accordingJy. It

should be noted that, however, this is not the most efficient method of storage. Storing
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only a few of the cross term values and using an interpolation scheme will reduce the

storage considerably. Of course, an interpolation table of (2.75) and (2.76) will lead to

a substantial reduction in memory at the expense of some computational efficiency.

Assuming that the positive sign is chosen in equations (2.75) and (2.76), we have

Ta
2bl = "Ta_bl
4 4

T_+lt_ = Ta+l_
3 3

T + _+
a263 = a2b3

4 t

T +
alb4 = 7"a'_ b 4

3 3

(2.77)

Choosing the positive sign for the (2.63) and (2.64), we also find

S + = S +
albl albx

3 3

S +
a2b2 = _b2

4 4

S +•sbl = S_bl
3 3

S_+b_ = S+a4b_
_. 4 4

(2.T8)

Thus, the dements of A sl may be written as

I+L_=
T.+ I + S_h T_+ $+ P_a_61 a2bs =3b,

r.*.,, t +s:.,.
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L_ b --

s + S2, :rgb,a,b, T_?b2 b3R=

r& sL_ r;,_ sg,, R,

sg,_,R, rg_ s+a363 "l'_b4

r& sg._R, rg_. <_.
(2.79)

The elements of the adjoint of A Bz required in the implementation of the CG algorithm

are

2.4

(LabDb) _ =

[ Z+(S:_b,)"

/ fl"+ ).

(I+ _o)=[ RT_3+, ha
z k alb3l

k (TSb')"

(s&,)"

D T (ri-h).

RTr8 - _
zL a, b3]

__- a
! o,b,)

7"+ _G T + • + )o

(%_) ,, °._,[ + (8_b 2)a + o Rrr8+ xa

(To+,,)o *+(S:_,,)° (r2,,) o

T + 6 + )_ - °R, (S°,b,) (%,, I + (So.b.)

R.(S°3b,)(r°;h)° T - ° (TaTb,)°

+ o - • T -(so,_) (r,_b,) R,(s_._)

(Sa3b 3 ) (7-a.b3)

T - a - o + a
R,(S.,b,) (T._b,) (s.._,)

(2.8o)

A CGFFT Algorithm

The CG algorithm to be employed for solving the system (2.55) is as follows

Initialize the residuM aad search vectors

_b = I1[_ '"_ o o o ]rllg._llblh =

s = A_ (°)

(2.81)

(2.82)
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r 0) = b - s

s = A_r O) (2.83)

7. = II s 1122 (2.84)

3(°_= 7;' (2.85)

p(1) = /3(°)s (2.86)

Iterate for k = 1,...,Ng

s = Ap(O (2.87)

7. = II• II] (2.88)

a (k) = 7:1 (2.89)

_b(k+l) = _b(k) + a(k)p {O (2.90)

r (k+') = r(k)-a{k)p (k} (2.91)

7, - II,.¢_+uII] (2.92)

s = Aar (k+1) (2.93)

7, - IIs II] (2.94)

3 (k) = 7;' (2.95)

p(_+l) = p(O +/_(_)s(k) (2.96)

Terminate when k = N m or _ < tolerance.

The individual operations associated with the A Bz matrix-vector products axe quite

numerous and, therefore, will not be shown explicitly. However, it cast be shown that

the total system may be decomposed into a summation of two matrices; one involving
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operatorsassociatedwith the boundary integraland another involvingthe elements of

the finiteelement matrix. The system matrix may then be writtenas

{_)= {_s,)+ (_rs}.

where

(2.97)

and

{aBl} =

I + L_a L_bDb 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Zl

z2

Z3

Z4

(2.98)

0

Aba
{8FE} =

0

0

For the adjointoperations,we have

{SBI } --

and

{SFE} =

0 0 0

Abb Abl 0

Alb AII Aid

0 Adl Add

I+ LL

DrL:b

0

0

O00

000

0O0

O0O

o AL o o

o A_b A?b 0

0 Ab A?, A_,

0 0 A_d A_d

Zl

Z2

Z3

Z4

_2

'_3

_4

;2

:3

'4

(2.99)

(2.100)

(2.101)
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In each case,the operationisperformed such thatonly the resultingvector{s} need

be stored.
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Chapter 3

Computational Considerations

This method ise_cient interms ofmemory usage and computation time. We discuss

each of theseaspectsin detailbelow.

3.1 Storage Efficiency

The fundamental advant.ageof thismethod isthe reductionofstoragerequirements,

so thatthe scatteringby electricallylargebodiesmay be evaluated.To show thatthe low

storagerequirementof O(No) isassured,we referto tables3.1 and 3.2.These containa

listofallmajor memory consuming variables.A summarized listisalsogivenintable3.3.

SpecificaLly,table3.3includesthe memory requirementspertainingto the finiteelement

matrix (FE), fastFouriertransforTns(FT), boundary integralcrossterms (Cross) and

conjugategradientvariables(CG). Nc isone lessthan the number ofelements connected

to a paxticuhx node, and a typicalvalueof 5 isused here.

To put the quantitiesof table 3.3 in terms of Ng, the totalnumber of nodes, we

consider two specialgeometries. The mesh in fig. 3.1 corresponds to a penetrable

body, while that of fig.3.2 correspondsto an impenetrable structuretightlyenclosed
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by the picture frame. Within each special case two extremes are considered; a mesh

corresponding to a square object (N_ -- N_) and a long strip (Nx >> N_). In each case,

Ng is assumed to be large.

Alluding to table 3.4 the total storage is 0(Ng) for the square region, but is some-

where between O(N_) and O(N_) for the (Nx >> N_) case. This is based on the

assumption that all cross terms are individually stored, but by using an interpolation

table, the O(Ng) memory requirement can be assured regardless of the value of Nx with

respect to Nu. In table 3.5, more dramatic results for the storage of the cross term are

listed. In this case, all of the unknowns are on the outer two boundaries, so it appears

that the storage is O(N_) for the square case. One must note, however, that the factor

multiplying the Ng term may be quite small. The strip case, on the other hand, requires

an O(N_) storage. This case would be an unlikely candidate for the use of this method,

since that structure would be handled much more efficiently via a direct implementation

of the CGFFT method. As noted above, the storage of the cross terms may be brought

down to O(Ng) for all cases by using an interpolation table, and this will certainly be

necessary in a 3-D implementation.
P
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Memory Consumption

variable _ count comment

Mesh

xg _ No
Yg N o

Nglob 3N_

X coordinateofglobalnodes

Y coordinateofglobalnodes

Needed forFE matrix formation

Pointers

ABint _ Nob

Pnodes Pnum

dmatl N o - N_b

Points to observation a_d integration points

Points to nodes on conducting bodies

Element material properties

FiniteElement Matrix (FE)

~ (n.fa_)(N, #.)

Ng-N_

Ar

col

row

Non-zero valuesof FE matrix

Column pointerof FE matrix

Pointerto rows of FE matrix

Conjugate Gradient (CG)

Phiz N#

CG1 N,

CG2 N,

CG3 No

q MAX(N,, N,)

phiinc N4

Unknown vector

Residual vector

Search vector

Temporary vector

Temporary vector

Incident field vector

Table 3.1: List of major memory-consuming variables
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Memory Consumption (continued)

code

variable type count comment

Fourier Transforms (FT)

FTHxl C 2Nx

FTHx2 C 2N_

FTHx3 C 2Nx

FTHx4 C 2N==

FTHyl C 2N_

FTHy2 C 2N_

FTHy3 C 2N v

FTHy4 C 2N_

FT C 2MAX(N_, Nv)

WR R 2MAX(N_, N_)

WI R 2MAX(N=, Nv)

Fourier transform along x-direction

Fourier transform along y-direction

FT of unknown sub-vector

Temporary array

Temporary array

Cross-Term Matrices (Cross)

PQp C

PQm C

Table 3.2:

~ MAX( V,,

~ N,)

Legend

R = REAL*4

C = COMPLEX

I = INTEGER*4
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Figure3.1:Example ofthe mesh of a penetrablestructure

• i

Figure 3.2:Example of the mesh ofan impenetrable structure
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Major Memory Consumption (N_ >_Ny)

Item IType

FE COMPLEX

FT COMPLEX

Cross COMPLEX

CG COMPLEX

Count

(_¥_2)[Ng - 2(N= + N_)]

12N= + 8N_

4#.

Table 3.3: Summary of major memory consumption

Major Memory Consumption: Penetrable

INf=N_ N=>>N_Item

FE

FT

Cro6s

CG

2Ov/_g

2Iv,

4#,

12Jva/(Iv,+ 2)

2(N_flV,)2

4N,

9N, N )2 N~ ,,,2('#_h + 6_--_+ 71V,

Table 3.4:Summary of major memory consumption: fdledmesh
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3.2

tern

FE

FFT

Cross

CG

Major Memory Consumption:

N_=Nv

(_.X_)N,12

5N_/2

_v_/ 32

4N_,

~ N_/32+ SN,

Impenetrable

Nx >> N v

(8'_+-x2)Ng/2

3N_

N_IS

4_v_

~ Ng/S+ 1TN,/2

Table 3.5:Summary ofmajor memory consumption: open mesh

Computational Efficiency

Sincethe primary importance ofthismethod isstoragereduction,a comparable level

of efficiencywith alternativemethods isa bonus. A method forwhich a faircomparison

may be made isthe standard CGFFT. This requiresa 2-D FFT, which isslowerthan

using multiple1-D FFTs forlargebodies.We compared the two methods fora specific

penetrable scattererusing an _Apollo 3500 without code optimization. The pertinent

CPU times are compared intable3.6.The comparison providesonly a relativemeasure

of the speed difference.
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Body Properties

Composition

dielectric

_r = 4-j.1

Dimensions T/I (s) [

2A x 2A 8.6

FE-CGFFT CGFFT

155 1333 170 33 5610

Legend

T/I = time/iteration

I = number of iterations

Table 3.6: A comparision of computation effidency of the FF-,-CGFFT with the CGFFT

method
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Chapter 4

Far Field Computation

The scattered fields may be computed as

Using the discretization scheme developed earlier, we have

(4.1)

where the definitions for K_ and K_ axe as specified previously. Letting

1 [z,+_
_(z,y,_0) = _j_,_A G(z,z',y,_0)dz'

1 [_,+_ G(_, x0,y,_')d_'
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(4.2)becomes

7*(x, Y, Yc) = _ j,,__ G(x, x', y, yc)dx' (4.5)

1 [_,+_ o
7_(x, zc, y) = _ J_'-_ -_-'_x_G(x,xc, y, y')dy' (4.6)

v

¢'(x, y) =

- /_ ([y(x,_,yo,)- _(_,y, yo,11(_o,b - [_(_,y,yo,)+_-(_,_,yc,)](_, b )
t j=l

N_

+ _ ([_(_, x_, y) + _(_,,_c_, y)]{¢o_}j - [_(_, _o_,y) - _(_,,:_, y)]{¢b_b)
j=l

N_

+ _(W(x,y, Yc_) + 7_(x,y, Yc_)]{¢_,b -- [fl_(x,y, Yo-,)- 7_(x,y,Y--)I {Chub)
j=l

j=l

(4.7)

valid for all observation points (z, y). The specialize (4.7) to fax zone computations, we

must introduce the appropriate asymptotic expansion for the Hankel functions implied

in (4.3)-(4.6). In doing so, we have

where

J3Z(x,y, Yc, ) = jfo(P)fl(O, Ycl )e/k_ic°'O (4.8)
3 3

/_(z,xe2,Y) = jfo(p)f2(O,xe,)e jko_''in° (4.9)
,I 4

7*(x, Y, Yc, ) = -fo(p)f,(O, Yc, )koA sin 0e -/k°z' co.0 (4.10)
3 3

7_(z,xe2, Y) = - fo(p)f2(O, zc2 )koA cos Oejk°¢''tn° (4.11)
4 •

1,/ 2j e_Jkop (4.12)
fo(P) = "_V'_o p
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jkoyc I sin 0

fl(O, yc_) = -e 3 (4.13)
3

jkoxc 2 cosO

f2(O, xc2) = -e , (4.14)
4

in which (p, 0) imply the usual cylindrical coordinates of the observation point. Substut-

ing expressions (4.8)-(4.11) into (4.7), we obtain

¢}(_, y) = -fo(p)

_ ([j+ koAsinO] {¢_,}j- [3"- koAsinOl {¢b,}j)f1(O,Y.,)eja°:''¢°_°

N_

+ _ ([j - koAcos01{¢.. ); - [j + koZXcos01{¢_ b) A(0, .o. )..ko.,.i. 0
j=l

N_

+ _)-_([j - koAsinO] {¢_3}j - [J + koAsinO] {¢b3}.i)£(O,Y_a)e jk°x'¢°_°
j=l

" }+ _([j + koAcQsO]{¢o.b - [J - koAcosO]{¢b.b)A(O._.)_ko_,'i-o
j=l

(4.15)

The echowidth is defined by

and from (4.15) we have

1

4ko

a = p--,colimzxp,[_ 2 (4.16)

_'_.([j+ koA sin0]{¢_,}./-[j- koA sin0]{¢s,}./)f1(O,y,,)ejk°"co,0

j=l

N,

+ E ([J- koA cosO] {¢_}j - [j+ koA cosO] {¢b2}j) f2(O,xc2)e"ik°u''in°
j=l

N_

+ _ ([j - koAsin 01{¢a3}j - [J+ koA sin01{¢b_}/) f1(O,Yc3)edk°'°c°'°
5=I

Nu 12
+ _:-':.([3"-t- koAcosO] {¢,,}j - [j- koAcosOl{Cb,}j)f2(O,x,)eJkoU, silo

j=l

(4.17)
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Chapter 5

Code Validation

The scattering patterns from several rectangular structures are presented. The echo

width is computed for each structure and compared to the results of the moment method.

The bodies are discretized at a sampling rate of 20 samples/free-space wavelength.

Results are presented for the following cases:

• perfectly conducting bodies (figs. 5.1 and 5.2)

• partially and fully coated perfectly conducting cylinders (figs. 5.3 - 5.8)

• composite body (fig. 5.9)

In each figure, the discretized geometry is shown along with the corresponding results.

As seen in all cases, the generated patterns using the FE-CGFFT formulation are in

excellent agreement with the moment method data.
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i
0.0

• . I , , I , , 1 1 I , ,

15.0 30.0 45.0 60.0 75.0 90.0

Angle (deg)

Figure 5.1: Ez b_kscatter from a .25 x 2A body.
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Figure 5.2: //, backscatter from a .25 x 2A body.
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. FE-GCFFrMOM
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Figure 5.3: Ez backscatter from a .25 x 1A perfect conductor with a ),/20 thick material

coating containing the properties _ = 5. -j.5,#r = 1.
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Figure 5.4: H_ backscatter from a .25 x 1A perfect conductor with a A/20 thick material

coating containing the properties Cr = 5. - j.5,#, = 1.
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Figure 5.5: E, backscatter from a .25 x 1A perfect conductor with a A/20 thick material

coating containing the properties _r = 5. - j.5,/zr = 1.5 - j.5.
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Figure 5.6: Hz backscatter from a .25 x 1A perfect conductor with a A/20 thick material

coating containing the properties E_ = 5. - j.5,/zr = 1.5 - 3.5.
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Figure 5.7: E, backscatter from a .25 x 1k perfect conductor with two A/20 thick top

material coatings. The lower layer has the properties _. = 2. - j.5,/_r = 1.5 - j.2, and

the upper layer has properties e_ = 4. -j.5,/_, = 1.5 -j.2.
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Figure 5.8: Hz backscatter from a .25 x 1A perfect conductor with two A/20 thick top

material coatings. The lower layer has the properties (r = 2. - j.5,/_r = 1.5 - j.2, and

the upper layer has properties _r = 4. - j.5, _r = 1.5 - j.2.
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Figure 5.9: Hz scattering from a composite body. Both the perfect conductor and the

dielectric body are A/2 in each dimension. The material properties are _, = 5.-j.5, p, =

1.5 - j.5.
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Chapter 6

Conclusions and Future Work

A procedure was developed for computing the scattering by 2-D structures. This

procedure combined the boundary integral and finite element methods, and the result-

ing system was solved via CGFFT. The main advantage of the new approach was a

reduction in memory dema_, d to O(N) compared to O(N 2) required with traditional

solution techniques. A detailed map of the storage requirements was presented, and the

principle memory consuming arrays were discussed. Also, the computational efficiency

of the technique was examined and found favorable. To validate the proposed solution

approach, several backscatter patterns were presented and compared with results based

on traditional solution methods.

A goal is to extend the technique to 3-D applications. In this case, the cross terms

must be efficiently stored using an interpolation table to ensure an O(N) storage re-

quirement. Also, the use of a simple boundary (as in [15]) in the application of the

boundary integral equation would be desirable for additional storage reduction. Higher

order elements are further of interest to increase the CG convergence rate. Second order

elements are also within the solution domain of M_xweU's equations and would allow
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a moreaccurateevaluationof the normal field derivatives. In addition, there are other

numerical difficulties that must be addressed in 3-D applications. The modeling of the

fields near corners of the scattererrequires some care (an obvious approach is to avoid

placing a node at the corner location). Also, the field discontinuity at material transi-

tions must be handled properly. The standard basis functions ensures continuity across

a boundary, but this will require some modification.
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Chapter 7

Program Manual

In this section, brief descriptions of the pre-processing programs (mesh generators)

and the main processing program are provided. They have been executed on an Apollo

workstation an IBM 3090-600E and a Cray Y/MP.

7.1 Description of FECGFFT

The main processing program, FECGFFT, is a menu driven program which allows

the user to load the desired pre-generated mesh file, choose the type of computation

(E- or H-polaxization,backscatter or bistatic echo width), generate the desired data and

store the resulting output. Some initial post-processing is also performed. For instance,

if the near-field values on the grid axe stored (this option is only available for bistatic

computation), an additional file may be generated for a contour plot.

The following menu is produced by FECGFFT during its execution.

****** Main Menu ******

Pre-process ing
(I) Load Finite Element Mesh File
(2) Set ne. CG parameters
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Analysis

(3) E-polarization
(4) H-polarization

(51 E-polarization
(61 H-polarization

(Backscatter)
(Backscatter)

(Bistatic)
(Bistatic)

Post-processing

(7) Generate 3-D plot file

Test Routines

(i0) Element node ordering

(II) Test integral matrix: scattered fields
(12) Free-space field comparision

(20) Quit

Item (1) allows the user to load a mesh data file generated from one the mesh gen-

erators to be discussed later. Actually, any mesh generator may be used, but the file

must contain the correct information and format. This information can be found by

examining the module MLOAD.

Item (2) allows the user to change the CG residual error tolerance value and interval

for printing the iteration number and the associated residual error.

Items (3) and (4) are selected for the generation of backscatter data for E- and H-

polarization, respectively. When either of these is selected, the starting angle, stopping

angle and angle increment will be prompted. The file name for the far-field data is also

requested. A response of "none" will produce no file. A prompt for the pad size will then

be requested. The suggested response of "1" will automatically determine the proper

pad size. When the program has finished generating the desired data, it returns to the

main menu.

Items (5) and (6) are selected when bistatic data for E- or H-polarization are desired.
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When either of these is selected, the incident angle will be prompted followed by the

starting angle, stopping angle and angle increment. The file name for the far-field data

is requested, followed by a file name for storing the nodal field values. A prompt for the

pad size follows as before.

Item (7) allows the user to generate data in MPLOT format for contour plots. At

the present time, only rectangular bodies will work for this option.

Items (10)-(12) direct the user to test routines, not used for normal operation.

The pertinent files which contain groups of subroutines associated with the accom-

panying description are as follows:

file name

fe_cgfft.ftn

fe_vec_sub.ftn

fe_io_sub.ftn

fe_test3-sub.ftn

fe_cross_sub.ftn

fe_matrix_sub.ftn

fe_test5_sub.ftn

fe_fft_sub.ftn

fe_three_sub.ftn

fe_field_sub.ftn

fe_ftest_sub.ftn

fe-summary_sub.ftn

brief description

main program

vector operation subroutines

file i/o routines

near-field test routines

cross-term subroutines

FE matrix routines

node order test routine

FFT routines

three-dimensional plot data generation

near/far field computation

free-space test routine

generates session summary
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These files must be compiled and linked prior to execution.

7.2 Mesh Generator for Curved Bodies

This program is under development for various specific types of bodies. It may,

however, be used to generate a mesh for virtually any desired body. The mesh generation

is accomplished by first dividing the region between the impenetrable surface (if any) and

the rectangular enclosure into first, second or third order serendipity elements. These are

subsequently mapped to a square domain, subdivided and mapped back. Examples of

these are shown in fig. 7.1. It works well for modelling regions with curved boundaries,

but generally produces more unknowns than necessary for the solution method.

An input file to this program may be generated either with option (2) from the main

menu, or manually. Selection of option (3) from the main menu processes this file and

places the results in a specified output file. The output file is then used as input to the

program FECGFFT.

Running the program produces the following menu:

gg tit S _ lllglg

Main Menu

(1)
(2)
(a)

(s)

(lO)

Preferences

Create an input file

Process an existing input file

Plot routine

Ouit

Item (1) has not been incorporated as of yet. The selection of Item (2) produces the

menu:
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Figure 7.1: Typical serendipity elements used in the region descretization process
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Input File Creation Menu

(I) Conducting Strip

(2) Rectangular Coated Slabs

(3) Coated Ogive
(4) Circular Cylinder

(10) Return to Main Menu

Only Items(3)and (10)are operationM at t_stime. Selection of(3)yieldsthe menu:

Ogive Menu

(1) Encer geometry

(2) Modify geometry
(3) RETURN

Choosing Item (1) resultsin a seriesof prompts outlined as follows:

1. a,b for the coating, where a = height of the arc and b = half-length as indicated

in fig. 7.2

2. the relative permittivity and permeability of the coating

3. a,b for the conductor

4. sampling interval (in wavelenths) at the integration boundary

5. number of circumferentialsamples in the free-spaceregion

6. number of circumferential samples in the material

7. arc distance along coating

8. arc distance along conductor

9. comment to appear in the input file
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Figure 7.2: Arc used for part of an ogival structure.

10. input file name

Upon completion of the session, a file is generated to be used at the input to FECGFFT.

Selecting Item (3) results in a prompt for the input and output filenames.

Manual generation of the input file requires that the scattering body be surrounded

by a rectangular boundary displaced approximately one element from the body. The

region within the rectangular boundary and the impenetrable body surface (if present)

is then subdivided into either linear, quadratic or cubic elements, examples of which are

given in fig. 7.1. Note that every node and side of each element is numbered as indicated.

The output file contents are listed as indicated in tables 7.1 and 7.2 with the variable

and descriptions in table 7.3. The first four lines are self explanatory. The next group

of lines contains the coordinates of the nodes, and the order of these pairs determines

the global node numbering scheme. Two real numbers followed by a "C" are assumed

to be in cylindrical (r,0) coordinates centered at the previously specified value. An "N"

following the "C" will change the center coordinates to zc, Yc. Immediately after the

node coordinates definition, the elements or "blocks" are defined. The local/global node
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relationshipdefinesthe block. This format is repeatedfor eachof the N, elements.

The elements must then be connected by specifying the sides of adjacent elements. This

avoids the time-consuming task of comparing the coordinates of every node to the others

for spatial commonality. The impenetrable and integration boundaries designation are

present for a similar reason. Finally, the material properties are requested. The order of

these determines the number to be used in determining the element material property

number. The free-space value is always present.
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Line number Contentsof Line

i

2

3

4

5

N_+4

N_+5

Nn+6

N,_+7

N.+8

N_+9

Comment

N_, 1, 0

fl, f2, f3, f4, f5

N_

x,y (or r,O,C or r,0,CN,xc, y_)

x,y (or r,0,C or r,0,CN,xc, y_)

Comment (1-st Block)

0, 0, M1

N,_, N,;, O1

1., 1.

L _ a(1), L _ G(2),..., L _ G(01)

g. + g_+3

N_ + Ne+4

g. + N_+5

g. + N_+6

N. + N_+7

Comment (Ne-th Block)

0, 0, MN,

N4,, ON.

1.,1.

L _ G(1), t _ G(2),..., L _ G(ON,)

Table 7.1: Beginning portion of the input file format
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Line number Contents of Line

N,_ + N_+8

N,_ + N_+9

Nn + Ne+10

N,_ + N_ + N_+9

N,, + N_ + Nc+10

Nn + Ne + Nc+ll

Nn + N, + N_+12

N,, + N, + N¢+ Nb_+11

N,,+N.+N_+Nbc+12

N. + N, + Nc + Nb¢+13

Nn + Ne + Nc + Nbc+14

N,_ + N, + Nc + Nbc + Nbi+13

N,, + Ne + Nc + Nb¢ + N_+14

Nr, + Ne + Nc + Nbc + Nbi+16

iv. + N, + N_ + Nb_ + N_ + Np+15

Comment (Connection)

N_

i
ei_ _j_ ek_ 8 k

Comment (Conducting Boundary)

N_o

i
el, aj

i
el, Sj

Comment (Integration Boundary)

gbl

i
el, sj

i
el, Sj

Comment (Material Property Table)

7_e{e,.}, Zm{e,.}, 7_e{u,.}, Zm{u,.}

Table 7.2: Remaining portion of the file input format
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variable type description

N_ I

fl I

f2 i

f3 I

f4 i

fs I

Nn I

(x,y) R,R

(r,0) R,R

R,R

I

N_, I

O; I

L .-. G(i) I

Nc I

ei I

J I
3 i

Nbc I

Nbi I

Np I

total number of modelling elements

put element numbers on mesh (] =yes, 2=no)

put node numbers on mesh (l=yes, 2=no)

put material numbers on mesh flag (l=yes, 2=no)

surround mesh with scale (l=yes, 2=no)

generate PostScript file (l=yes, 2=no)

total number of nodes

cartesian coordinate pair

cylindrical coordinate pair

coordinates of arc center

material number of ith element

number of samples on side i of element j

order of ith element

global node number of ith local node

total number of element sides in contact

element number

side i of element j

number of elements adjacent to conducting boundary

number of elements adjacent to integration boundary

number of entries in material table

Table 7.3: Variable description and FORTRAN declaration type.
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Figure 7.3: The mesh of a conducting circularcylinder.

Example

The following fileis an example of a perfectly conducting cylinder of radius .5 A in

free space. A figure of the resulting mesh is shown in fig. 7.3.

Circular cylinder
8,1,0,
2,2,2,2,2
40,
.5,90. ,CN,0. ,0.
.5,112.5,C
.5,135. ,C
.5,157.5,C
.5,180. ,C
.5,202.5,C
.5,225. ,C
.5,247.5,C
.5,270. ,C
5,292.5,C
5,315. ,C
5,337.5,C
5,0. ,C
5,22.5,C
5,45. ,C
5,67.5,C

8 Aug 1989
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525,90. ,C
64,135. ,C
525,180. ,C
64,225.,C
525,270.,C
64,315.,C
525,0.,C
64,45.,C
55,.55
275,. 55

0 ,.55
- 275, .55
- 55,.55
- 55,.275
- 55,0.
- 55,-.275
- 55,-.55
- 275,-.55
0 ,-.55
.275,-.55
.55,-.55
.55,-.275
.55,0.
.55,.275
I-ST BLOCK

0,0,1,
11,3,8,
1.,1.,
1,15,25,27,16,24,26,17
2-ND BLOCK
0,0,1,
11,3,8,
1.,1.,
3,1,27,29,2,17,28,18
3-rd BLOCK
0,0,i,
3,11,8,
I.,1.,
31,5,3,29,19,4,18,30
4th BLOCK

0,0,1,
3,11,8,
1.,1.,
33,7,5,31,20,6,19,32
5th BLOCK
0,0,1,
11,3,8,
1.,1.,
33,35,9,7,34,21,8,20
6th BLOCK
0,0,1,
11,3,8,
1.,1.,
35,37,11,9,36,22,10,21
7th BLOCK

0,0,1,
3,11,8,

64





I°,1°,

11,37,39,13,22,38,23,12
8th BLOCK
0,0,1,
3,11,8,
1.,1.,
13,39,25,15,23,40,24,14
CONNECTION
8

1,1,2,3
2,1,3,4
3,2,4,4
5,1,4,2
6,1,5,3
7,2,6,3
7,4,8,2
8,4,1,3
Perfectly Conducting Boundary
8,
1,2
2,2
3,3
4,3,
5,4,
6,4
7,1
8,1

Integration Boundary
8,
1,4,
2,4
3,1
4,1
5,2
6,2
7,3
8,3

Dielectric property table Epsr,
1
1.,0.,1.,0.

Epsi, Mur, Mui

The program contains the following files:
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file name

gen.ftn

gen_sub.ftn

fe_grid_ttz_sub.fin

fe_grid_sub.ftn

fe_post_sub.ftn

brief description

main program

contains associated subroutines

for plotting a mesh with rectangular

elements on the Apollo screen using

graphics primatives

for plotting a mesh with triangular

elements on the Apollo screen using

graphics primatives

for generating a postscript version

fe_grid_sub.ftn

These programs should be compiled with the SAVE option and linked before execution.

7.3 Mesh Generator for Rectangular Bodies

This program is useful for generating the mesh associated with coated rectangular

bodies. Executing the program produces the following menu:

**** Mesh Generation Menu ****

(i) Conducting Strip
(2) Composite Bodies

(3) View an existing file

(10) Quit

Item (1) should be ignored, since the data file it generates for the strip does not

distinguish between the nodes above and below the strip. It is thus invMid for H-
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polarization computations. Item (2) allows the user to generate a rectangular composite

body. Upon its selection, the user is promped for the following items:

1. the size of the square building block cell (in wavelengths)

2. the permittivity and permeabilities of the various material layers for the structure

3. the length and width of the main scattering structure in integer multiples of the

initially specified building block size in 1.

4. the type of scattering body (conductor or material)

5. the number of layers for each side plus the material number from the material table

generated in 2.

6. the number of cells between the scattering body and each of the four boundaries

(usually 0, unless a larger grid is desired)

7. the name of the output file to be used by the FECGFFT program
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Figure 7.4: The mesh of a rectangular partially coated cylinder.

Example

To generate a .5A x 2A conducting body with a .1A material coating of _ = 5. - j.5

and #_ = 1.5 - j.1 over sides (1) and (2) (see fig. 7.4, the following output is displayed:

**** Mesh Generation Menu ****

(1) Conducting Strip

(2) Composite Bodies
(3) View an existing file

(10) Quit
2
Enter del
.05

(size of building block) in wavelengths

Enter dielectric materials to be used [(-I.,0.) to quit]

(Remember, Imaginary parts <-0.)

Epsilon 1 - (1.000000,0.0000000)
Mu 1 = (I.000000,0.0000000)

Enter Epsilon 2
(5.,-.S)
Enter Mu 2

(1.S,-.1)
Enter Epsilon 3
(-I. ,o.)
Enter len_th and width of main body in units of del

40,10
Main body composition: (0) Conductor (I) Dielectric

0
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I I
I 14
I I

Enter Onumber of dielectric layers sides 1, 2, 3, 4:
2,2,0,0

Index Epsilon Mu
1 1.000 0.000 1.000 0.000
2 5.000 -0.500 1.500 -0.100

Material property number for: Side 1 layer 1
2
Material property number for: Side 1 layer 2

2

Index Epsilon Mu
1 1.000 0.000 1.000 0.000
2 5.000 -0.500 1.500 -0.100

Material property number for: Side 2 layer 1
2

Material property number for: Side 2 layer 2
2

Number of rows and columns of blank cells surrounding the body
0,0
Generate PostScript file? (1=yes, 2=no)

2

Enter file name for data storage
test_out

**** Mesh Generation Menu ****

(1) Conducting Strip

(2) Composite Bodies

(3) View an existing file

(10) Quit

The output filetest_ou'ccontainsthe mesh informationrequiredby FECGFFT.

Item (3) providesforviewing the ploton an Apollo screen.Upon itsselection,the

user willbe prompted for a filename. Entering the interactivemode resultsin the

followingmenu:

Interactive Mode Menu
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(I) Max and Mins

(2) Picture orientation
(3) Picture size
(4) Picture offset

(5) Tick spacing

(6) Legend contents
(7) Legend offset

(8) Legend label size

(9) Label contents
(I0) Label size
(11) Number size
(12) Number format

(13)
(14)
(15)
(16)

(17)

(20)

Print option flags
View on screen

Get hard copy

PsPreview hard copy

Reset default values

Re%urn tO main menu

Currently, options (6)-(10)"have not yet been incorporated.

self-explanatory.

The programs contains the following files:

file name brief description
i

mgen lin_nc_new2.ftn main program

fe.grid_sub.ftn

feopOSt.sub.ftn

for plotting a mesh with triangular

elements on the Apollo screen using

graphics primatives

for generating a postscript version

fe_grid_sub.ftn

which should be compiled with the SAVE option and linked before execution.

The remaining items are
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